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Abstract

The emerging field of bioinformatics has recently created much interest in the computer science and engineering communities.
With the wealth of sequence data in many public online databases and the huge amount of data generated from the Human
Genome Project, computer analysis has become indispensable. This calls for novel algorithms and opens up new areas of
applications for many pattern recognition techniques. In this article, we review two major avenues of research in bioinformatics,
namely DNA sequence analysis and DNA microarray data analysis. In DNA sequence analysis, we focus on the topics of
sequence comparison and gene recognition. For DNA microarray data analysis, we discuss key issues such as image analysis
for gene expression data extraction, data pre-processing, clustering analysis for pattern discovery and gene expression time
series data analysis. We describe current methods and show how computational techniques could be useful in these areas. It
is our hope that this review article could demonstrate how the pattern recognition community could have an impact on the
fascinating and challenging area of genomic research.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Recent advancement in molecular biology and genomic
research, such as high throughput sequencing methods and
cDNA microarray technology, has generated an unprece-
dented amount of data. The completion of the Human
Genome Project in sequencing the complete human genome
has also spurred great interest in the research community
to utilize such wealth of information in different areas of
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biological and medical sciences. Efficient analysis of this
massive amount of data by computational methods is fast
becoming a major challenge[1–3].

Two technologies that play dominant roles in elucidating
the relations, structure and function of genes are DNA se-
quence analysis and DNA microarray data analysis. DNA se-
quence analysis has been around for over two decades, even
before the availability of mass scale sequencing techniques.
Nevertheless, it has regained momentum in recent years due
to the advent of fast computers and algorithms, and the avail-
ability of up-to-date, public domain online databases hold-
ing massive amount of sequence data (seeTable 1). These
databases also enable researchers to share their works or to
access the works of others in the most up to date manner.
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Table 1
Three major public domain online DNA sequence databases

(1) EMBL (http://www.ebi.ac.uk/embl/index.html)
The EMBL database is maintained by the European
Bioinformatics Institute (EBI) and is Europe’s primary
collection of nucleotide sequences. The current release
is EMBL Release 82 (24 February 2005), which con-
tains 49.5 million sequence entries comprising 85.1 bil-
lion nucleotides.

(2) GenBank (http://www.ncbi.nlm.nih.gov/Genbank/)
The GenBank database is maintained by the National
Center for Biotechnology Information (NCBI), USA.
The current release is Release 147 (20 April 2005),
and contains similar number of sequence entry and nu-
cleotide bases as in EMBL.

(3) DDBJ (http://www.ddbj.nig.ac.jp/Welcome-e.html)
The DDBJ database is maintained by DNA Data Bank
of Japan. The current release in DDBJ is Release 61
(28 April 2005), which contains 43.12 million sequence
entries comprising 47.1 billion nucleotides.

In the first part of this review article, we present an
overview on some of the major research areas in DNA se-
quence analysis. To set the scene, we first give a brief de-
scription of the biology background required for a proper
understanding of the material. Next, we describe a very im-
portant area in DNA sequence analysis, namely, sequence
comparison. When a molecular biologist is presented with
an unknown DNA sequence, his/her first task would be to
search for similar annotated sequences in the major public
sequence databases. Doing so would allow the biologist to
make use of the prior knowledge accumulated through the
efforts of many researchers to infer the possible function or
structure of the unknown sequence, which in term lead to
more specific and targeted analysis or experimentation later
on. The other problem of DNA sequence analysis we de-
scribe is gene prediction, which has been an area of active
research in bioinformatics in recent years. The basic idea in
gene prediction is to look for characteristic features that are
present in the coding regions of a DNA sequence. One well-
known characteristic of coding regions is the 3-base period-
icity due to the unequal usage of the codons. Many coding
measures that aim to detect such periodicity have been pro-
posed. Some of the most successful gene prediction algo-
rithms are based on classical signal processing techniques
such as the discrete Fourier transform, as well as the detec-
tion of specific sub-sequence patterns in the upstream and
down stream regulatory regions.

In the second part of this review article, we present an
overview of the DNA microarray technology and gene ex-
pression analysis. DNA Microarray technology, which al-
lows massively parallel, high throughput profiling of gene
expression in a single hybridization experiment, has recently

emerged as a powerful tool for genomic research. A critical
aspect of DNA microarray technology is to extract expres-
sion data from the microarray images accurately. Due to the
nature of the microarray images, innovative image process-
ing techniques are required to locate the spots in the images
and to measure the resulting expression ratio reliably. We
outline a robust method of spot extraction, and describe how
data pre-processing is performed on the expression data.
Once the expression data are obtained, they usually undergo
cluster analysis to detect groups of genes that are similarly
expressed. Some of our recent works on clustering of gene
expression data are outlined. Very often, one is interested in
seeing the dynamic behavior of genes under different stimuli
or environment variables. Whole-genome expression time-
series data can describe a dynamic biological process such
as the cell cycle or metabolic process. They allow one to
determine the causal relationships between the expressions
of different genes and to infer gene regulatory information
in a cell. We outline various approaches for studying time
series expression data. Our recent work on time series ex-
pression data analysis using autoregressive (AR) modeling
for frequency spectral estimation indicates that many use-
ful and biologically relevant regulatory information that are
otherwise hidden could be uncovered.

2. DNA sequence analysis

2.1. Biology background

DNA is the basis of heredity. It is a polymer made up
of small molecules called nucleotides, which can be distin-
guished by the four bases: adenine (A), cytosine (C), guanine
(G) and thymine (T). A DNA sequence is therefore speci-
fied completely by a sequence consisting of the four alpha-
bets {A, C, G, T}. DNA usually occurs in double strands,
and the bases in the two strands are complementary to each
other, i.e., A pairing with T and G pairing with C by hydro-
gen bonds. The double-stranded DNA forms the well-known
double helix in space (seeFig. 1). The pairing mechanism
allows one strand of DNA to serve as template for producing
the reverse complement strand, thus explaining how DNA
can duplicate.

DNA carries the genetic information required by an or-
ganism to function. The flow of information within a cell is
summarized by the diagram inFig. 2. In the schematic, we
see that the intermediate step from DNA to protein synthesis
is the process called transcription. Transcription copies in-
formation in the DNA into copies called RNA. If a segment
in the DNA sequence encodes a protein (corresponds to a
coding region in the DNA sequence), the RNA is called a
messenger, or mRNA. In transcription, the DNA nucleotides
A, C, G, T are respectively transcribed into RNA nucleotides
U (uracil (U) replaces thymine (T) in RNA molecules), G,
C, A. The final step of information flow is the translation
process. The information encoded in the mRNA is used
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Fig. 1. The double helix of DNA sequence with a gene in the se-
quence delimited. Genes are specific sequences of bases that encode
instructions on how to make proteins. (Courtesy of U.S. Department
of Energy Human Genome Program,http://www.ornl.gov/hgmis).

Fig. 2. Flow of information within a cell.

to specify the precise ordering of the amino acids, which
form proteins. Proteins are polypeptide chains composed of
an alphabet of 20 different amino acids. The genetic code
is a triplet bases code, where successivecodonsconsisting
of three successive RNA nucleotides encode one of the 20
amino acids or the signal to stop translation.

The transcription process is different in prokaryotes (i.e.,
simple bacteria) and eukaryotes (non-bacteria, possess a
nucleus, e.g., fungi, unicellular paramecia, all plants and
animals). In prokaryotes, the RNA polymerase produces
an mRNA transcript directly from the DNA template. In
eukaryotes, genes in a DNA sequence are not continu-
ous, but instead are broken up into coding regions (exons,
which code for proteins) and non-coding regions (introns).
The RNA is transcribed in the nucleus and then undergoes
post-transcriptional modification (i.e., pre-mRNA splic-
ing), where the introns are spliced out and the remaining
exons are joined to form the final mRNA (seeFig. 3),
which is then used for protein synthesis during translation.
Thus, embedded within the DNA sequence are specific
sub-sequences that control the initiation or termination
of transcription. These sub-sequences, such as promoters,
enhancers, silencers, terminators, are regulators of gene ex-
pression. Other sequences of interest within eukaryote DNA
sequence are coding regions (exons), non-coding regions
(introns and intergenic regions), splice signals or splice
sites, and the location of the open reading frames (ORFs).

Fig. 3. Transcription process in eukaryotes cell. With alternative
splicing, some exons may be omitted when forming the final
mRNA.

2.2. Sequence comparison

Given a new DNA sequence, one would like to study
the functional and structural information encoded in the se-
quence. In general, the first step taken by a biologist would
be to compare the new sequence with sequences that are al-
ready well studied and annotated. Sequences that are similar
would probably have the same function, in terms of a func-
tional role (i.e., ORFs coding for similar proteins), regula-
tory role (i.e., similar regulatory or biochemical pathways)
or structural properties in the case of proteins. Additionally,
if two sequences from different organisms are similar, there
may be a common ancestor sequence, and the sequences are
then said to be homologous. Relationship between homol-
ogous sequences has important implications in speciation
study and phylogenetic analysis.

One method for sequence comparison is by sequence
alignment. This is similar to the string matching problem
that has been studied extensively in pattern recognition. Se-
quence alignment is the procedure of comparing two (pair-
wise alignment) or more (multiple sequence alignment) se-
quences by searching for a series of individual characters
or character patterns that are in the same order in the se-
quences. The standard pairwise alignment method is based
on dynamic programming[4–6]. The method compares ev-
ery pairs of characters in the two sequences and generates
an alignment and a score, which is dependent on the scor-
ing scheme used (i.e., a scoring matrix for the different
base–pair combinations, match and mismatch scores, and a
scheme for insertion or deletion (gap) penalties).

Although dynamic programming for sequence alignment
is mathematically optimal, it is far too slow for compar-
ing a large number of bases. Typical DNA database today
contains billions of bases, and the number is still increas-
ing rapidly. To enable sequence search and comparison
to be performed in a reasonable time, fast heuristic local
alignment algorithms have been developed. The trade-off
in mathematical optimality in this case is more than com-
pensated for by the gain in speed and efficiency. The most
widely used heuristic database search tool isBLAST[7,8]
and is freely available in many websites around the world,
such as NCBI (National Center for Biotechnology Informa-
tion, http://www.ncbi.nlm.nih.gov/BLAST) and the EBI
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Fig. 4. The AC DB-curve of the DNA sequences of the first exons
of beta-globin genes for eight different species (Human, Goat,
Opossum, Gallus, Lemur, Mouse, Rabbit, and Rat).

(European Bioinformatics Institute,http://www.ebi.ad.uk/
blastall). Many variants ofBLAST have been developed
to search for different type of databases and for differ-
ent applications.BLASThas now become the standard for
sequence alignment and database searching.

For relatively short sequences, sequence comparison can
also be done visually by sequence visualization techniques.
One such 2D visualization technique is the DB-curve (dual-
base curve)[9]. In DB-curve DNA sequence visualization,
two out of the four bases are considered at a time. The two
bases are assigned a+45◦ and−45◦ vectors, respectively,
whereas the remaining bases are assigned a+90◦ vector.
Fig. 4shows the AC DB-curve of the DNA sequences of the
first exons of beta-globin genes for eight different species.
Similarities and differences in the sequences can be readily
observed from the plots.

Although most sequence comparison methods to date
are based on string matching, other comparison techniques
based on more traditional signal processing approach are
possible. The later methods usually require the string of al-
phabets of DNA sequence be first mapped to a numeric se-
quence prior to analysis. Signal processing techniques such
as the fast Fourier transform (FFT) and correlation could
then be applied to the numeric sequences[10–12]. Recently,
multiresolution signal processing techniques such as wavelet
transform have started to be applied to DNA sequences too
[13,14].

The DNA sequence comparison problems are described
here as a sort of string alignment and matching problems; a
problem well-studied in the PR community. However, com-
parison and alignment of biological sequences is different
from the general string matching problem in computer sci-
ence in at least several aspects. First, the number of bases to
be compared can be huge. For example, just for the human
genome, the number of nucleotide bases is around 3× 109.

This places huge demand on the computational efficiency
and speed of the processing algorithms. Secondly, the per-
centage identity between two sequences can vary greatly;
a score of 30% identity can still be considered biologically
relevant. Thirdly, one should have some knowledge about
the biological nature of the problem to be solved. A result
that is mathematically sound may be highly implausible and
might not reflect what is known about the biological pro-
cess. For example, consider the problem of alignment of two
protein-coding DNA sequences. It is not very sensible to
align the DNA sequences of protein-coding genes. Instead,
it is much more sensible to translate the sequences to their
corresponding amino acid sequences and then put the gaps
into the DNA sequence alignment according to where they
are found in the amino acid alignment. To illustrate, con-
sider the alignment of two protein-coding DNA sequences
ATGCTGTTAGGG and ATGCTCGTAGGG. An alignment
algorithm might give the solution below as the preferred
alignment:

A T G C T G T T A G G G

A T G C T C G T A G G G

However, the alternative alignment below, although less
mathematically optimal (i.e., with a smaller similarity score
due to the penalties imposed for gaps), may be much more
plausible biologically:

A T G C T - G T T A G G G

A T G C T C G T - A G G G

2.3. Gene prediction

Gene prediction, which is also widely known as gene
recognition, has been an area of active research in bioinfor-
matics [15]. In prokaryotes, gene finding is made simpler
by the fact that coding regions are not interrupted by inter-
vening sequences such as introns. Still, especially for short
open reading frames, it is highly non-trivial to distinguish
between sequences that represent true genes and those that
do not. Eukaryotic gene typically consists of exons inter-
rupted by non-coding regions such as introns or intergenic
regions. Prediction of eukaryotic gene is therefore a much
more difficult problem.

One way to analyze a sequence for regions of high cod-
ing potential is by an examination of various coding statis-
tics. A coding statistic describes the likelihood that a DNA
sequence is coding for a protein. Such approach has the
advantage that no similar sequence is needed as the infor-
mation to predict the protein coding genes in the sequence
is mined from the sequence itself. Many coding statistics
have been proposed by various researchers. Some of these
coding statistics are: codon usage bias, base compositional
bias between codon positions and periodicity in base occur-
rence[16–19]. It is clear that the sensitivity and the accu-
racy of the prediction depend on the statistics used. In[22],
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we have performed a statistical study on the effective cod-
ing features for coding/non-coding DNA sequence classifi-
cation for yeast, C. elegans and human. A total of 22 fea-
tures, divided into six groups, are analyzed. We compared
the discriminative power of the 22 coding features based
on their information content. We observed that the informa-
tion content of different coding features vary greatly for the
three species and not all features are equally effective for
different species. We found that features that are effective
for yeast and C. elegans are generally not very effective for
human and vice versa. The study indicated that a careful se-
lection of coding features tailored to the species of interest
is important to ensure good classification performance.

Recognition of coding regions or ORFs in human genome
based on coding statistics is a difficult problem due to the
short exon length, where the average length of exons of ver-
tebrate gene is only 137 bp[23]. Although good recogni-
tion rate can be achieved in the recognition of coding and
non-coding regions in yeast genome (>95% accuracy)[24],
the strengths of the statistical features alone are generally
not sufficient to identify human exons due to their limited
average length[20]. In Refs.[21,22], we are able to iden-
tify a small subset of features that has high discriminative
power (with classification accuracy of up to 90% for human)
while at the same time is complementary in their information
content.

It is well known that coding regions in a DNA sequence
usually exhibit a characteristic 3-base periodicity. It results
from the fact that coding sequences consist of codons and
these codons are not equally used (see, for example, the
relative frequency of codon usage in Homo sapiens given
in http://www.kazusa.or.jp/codon/). This characteristic has
been exploited in the recognition of coding regions in a DNA
sequence using spectral analysis[25–27]. Given a DNA se-
quence consisting of an alphabet of four characters {A, T, G,
C}. Let uA(n), uT (n), uG(n), uC(n) be the binary indicator
sequences which take the value of either 1 or 0 at location
n, depending on whether the corresponding characters ex-
ist at locationn. Then the discrete Fourier transform (DFT)
sequencesUA(k), UT (k), UG(k) andUC(k) provide a four-
dimensional representation of the frequency spectrum of the
DNA string. In the spectral analysis of DNA sequence, the
3-base periodicity due to codon usage bias will show up as
a distinct peak at the frequency indexk = N/3, whereN
is the length of the sequence. Usually no such peak is ap-
parent for non-coding sequences. If we define the following
normalized DFT coefficients atk =N/3:

A= 1

N
UA(N/3), T = 1

N
UT (N/3),

G= 1

N
UG(N/3), C = 1

N
UC(N/3). (1)

Then the quantity|A|2+|T |2+|G|2+|C|2, computed over
a sliding window, can be used as an exon predictor in a DNA
sequence[25,27]. In [26], Anastassiou used the optimized
measureW =|aA+ tT +gG+ cC|2 as a superior predictor

Fig. 5. Plot ofW = |aA + tT + gG + cC|2 using the optimized
weights given in Ref.[26] for a DNA stretch of C. elegans con-
taining 8000 nucleotides starting from location 7021.

of exons, where the weightsa, t, g, c are optimized with re-
spect to some cost function that maximally separate the cod-
ing sequences from the non-coding sequences in the train-
ing set.Fig. 5 shows the quantityW of the 351-point DFT
for a DNA stretch of C. elegans (GenBank accession num-
ber AF099922), containing 8000 nucleotides starting from
location 7021. The DNA stretch contains a gene (F56F11.4)
with five exons (indicated by the rectangular boxes overlay
on the plot), all identified by the peaks of the plot.

The spectral analysis technique can be applied to differ-
ent representation of the DNA sequence. Clearly, the result
would be dependent on the representation chosen. For ex-
ample, we have applied the spectral analysis technique to
the DB curve representation. Preliminary results have in-
dicated that sometime better positioning of the exons can
be obtained. One parameter that affects the exon predic-
tion result is the choice of window length. Appropriate win-
dow length is currently found through experimentation. A
multiresolution approach using technique such as wavelet
analysis could be an interesting avenue of research[28,29].
Spectral analysis technique can also be used to detect other
latent periodicities and features of biological interest. Inter-
ested readers are referred to[30].

Besides consideration of coding statistics, gene pre-
diction could also involve the identification of specific
sub-sequence patterns such as splice sites, promoter re-
gions, transcription factors binding sites and polyA sites
[1]. These specific regulatory elements play important roles
in the transcription and translation process of a gene and
their existence is strong indication of gene presence. Un-
fortunately, their identification is no trivial task[31,32].
Pattern recognition and machine learning techniques can
be very useful in such area. Some of the latest gene pre-
diction algorithms have used powerful machine learning
techniques (such as neural networks, pattern recogni-
tion methods, and rule-based methods) and probabilistic

http://www.kazusa.or.jp/codon/
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learning models (such as hidden Markov models (HMM))
to achieve better prediction results[33]. Some examples of
these algorithms are: GRAIL[34], GeneScan[35], Glim-
mer [36], GeneMark.hmm[37], MZEF [38], GeneFinder
[http://dot.imgen.bcm.tmc.edu:9331/gene-finder/gf.html],
MORGAN [39].

The problem of gene prediction is far from being solved.
Take for example the estimation of the number of genes in
the human genome. A few years ago, it was estimated that
the human genome contains around 100,000 genes. That
number drops to around 30,000 when the human genome
sequence was completed. It was recently suggested that the
number could possibly be as low as 20,000. In the summer
of 2003, gene prediction researchers admitted that they were
nowhere near establishing a final count and have decided
to call the winner to be at 24,500 for now[40]. The main
problem with gene prediction lies in what actually defines
a gene. Molecular biologists are finding that some genes
are shorter than anybody expected a gene to be. It is also
hard to tell sometime whether a piece of code is a single
gene or two that overlap. The community is also not quite
sure how to classify genes that code for multiple proteins
or gene-like sequences that code only for RNA. Added to
this complication are the so-called dark matters, which are
seemingly geneless regions in a genome that might contain
hidden coding sequences. It is clear that better prediction
performance will require better knowledge about why genes
have the characteristics they do, and to be able to exploit
that biological knowledge in the prediction algorithms.

3. DNA microarray gene expression profiling

3.1. cDNA microarray technology

Important insights into gene function can be gained by
gene expression profiling. Gene expressing profiling is the
process of determining when and where particular genes
are expressed. For example, some genes are turned on (ex-
pressed) or turned off (repressed) when there is a change in
external conditions or stimuli. In multi-cellular organisms,
gene expressions in different cell types are different during
different developmental stages in life. Even within the same
cell type, gene expressions are dependent on the cell cycle
the cells are in. DNA mutation may alter the expression of
certain genes, which causes illness such as abnormal tumor
growth or cancer. Furthermore, the expression of one gene
is often regulated by the expression of another gene. A de-
tail analysis of all these information will provide an under-
standing about the inter-networking of different genes and
their functional roles.

Microarray technology, which allows massively parallel,
high throughput profiling of gene expression in a single hy-
bridization experiment, has recently emerged as a powerful
tool for genomic research[41–43]. The technique allows the
simultaneous study of tens of thousands of different DNA

nucleotide sequences on a single microscopic glass slide.
Besides the enormous scientific potential of cDNA microar-
rays in the fundamental study of gene expressions, gene
regulations and interactions, they also have very important
applications in pharmaceutical and clinical research. For ex-
ample, by comparing gene expressions in normal and disease
cells, microarrays can be used to identify disease genes for
therapeutic drugs or for assessing the effect of a treatment.

The cDNA microarray holds hundreds or thousands of
spots, each of which contains a different known DNA se-
quence called a probe. These spots are printed onto a glass
slide by a robotic arrayer. In a microarray experiment, two
samples of cRNA, which are reversed transcribed from
mRNA purified from cellular contents, are labeled with dif-
ferent fluorescent dyes (usually Cy3 and Cy5, which have
different emission wavelengths) to constitute the cDNA
targets. The two cDNA targets are then hybridized onto the
microarray. If a target contains a cDNA whose sequence
is complementary to the DNA probe on a given spot, that
cDNA will hybridize to the spot, where it will be detectable
by its fluorescence. Spots with more bound targets will
have more fluorescent dyes and will therefore fluoresce
more intensely.

Once the cDNA targets have been hybridized to the ar-
ray and any loose target has been washed off, the array is
scanned by a laser scanner to determine how much of each
target is bound to each spot. The hybridized microarray is
scanned for the red wavelength (at approximately 635 nm
for the cyanine5, Cy5 dye) and the green wavelength (at ap-
proximately 530 nm for the cyanine3, Cy3 dye), which pro-
duces two images typically in 16-bit Tiff format. The ratio
of the two fluorescence intensities at each spot indicates the
relative abundance of the corresponding DNA sequence in
the two cDNA samples that are hybridized to the DNA se-
quence on the spot. By examining the expression ratio of
each spots in the Cy3 and Cy5 images, gene expression
study can be performed.Fig. 6 shows a schematic of the
cDNA microarray technique and the steps in performing a
cDNA microarray experiment.

The large amount of data in the microarray images ne-
cessitates the use of computer analysis. In general, analysis
of microarray data can be categorized into two parts: image
analysis for data extraction and data analysis on the gene
expression ratio[44]. Automatic and reliable analysis of mi-
croarray images has proved to be difficult due to the poor
contrast between spots and background, and the many con-
taminations or artifacts arising from the hybridization pro-
cedures such as irregular spot shape and size, dust on the
slide, large intensity variation within spots and background,
and nonspecific hybridization.

3.2. Image processing

The task in microarray image analysis involves comput-
ing the expression ratio for each spot giving information
about the relative extent of hybridization of the two cDNA

http://dot.imgen.bcm.tmc.edu:9331/gene-finder/gf.html
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Fig. 6. Left: A schematic of the cDNA microarray technique. Right: The steps involved in a cDNA microarray experiment.

samples. It typically involves the following steps: (i) iden-
tify the location of all blocks on the microarray image, (ii)
generate the grid within each block which subdivides the
block into p × q subregions, each containing at most one
spot, and (iii) segment the spot, if any, in each subregion.
We give a brief account of each of the steps in our image
analysis algorithm[45] below.

The microarray image analysis algorithm starts by gener-
ating a single gray level image from the two TIFF images.
The two TIFF images could undergo image registration if
needed. The resultant gray level image could undergo image
smoothing to reduce the effect of image noise. One way to
obtain the gray level imageX is to use the following equa-
tion:

X =
⌊

0.5 ∗
(
G′ +

(
median(G′)
median(R′)

)
R′

)⌋
, (2)

whereG refers to the Cy3 image,R refers to the Cy5 image,
G′ =√

G,R′ =√
R, and
 � denotes rounding to the nearest

integer in the range [0–255].
The blocks in a microarray image are arranged in a rigid

pattern due to the printing process, and each of the blocks
in a microarray image is surrounded by regions void of any
spots. Hence, an effective way for block segmentation is
through an analysis of the vertical and horizontal image pro-
jection profiles. In our image analysis algorithm, the pro-
jection profiles are obtained from an adaptively binarized
image. By performing analysis on the projection profiles, ac-
curate block segmentation can be achieved (seeFig. 7, left).
To locate the individual spots in a block, we perform the
gridding operation. Our gridding strategy consists of first lo-
cating the good quality spots (we called them guide spots).
To account for the variable background and spot intensity,
a novel adaptive thresholding procedure and morphological
processing are used to detect the guide spots. The geome-
try of the grid is then inferred from these spots (seeFig. 7,
right).

Spot segmentation is then performed in each of the subre-
gions defined by the grid. The segmentation involves finding
a circle that separates out the spot, if any, from the back-
ground. When a spot is present, the intensity distribution
of the pixels within the subregion is modeled using a 2-
class Gaussian-Mixture model to find the optimum thresh-
old. Once the sub-region is thresholded and segmented, a
best-fit circle is computed for the final spot segmentation.
Although the spot shape is constrained to be circular to en-
sure robustness to poor quality segmentation, adaptive shape
segmentation can be easily adopted for good quality spots.
Fig. 8presents some spot segmentation examples for blocks
of different spot density and quality from different microar-
ray images.

3.3. Data extraction and processing

Once the spots in a microarray image are extracted, the
intensity value of each spot can be obtained and the log
ratio, i.e.,M = log2R/G, which indicates the differential
expression of the two DNA samples, can be computed.
However, due to contaminations and experimental errors,
some preprocessing of the raw intensity value is needed be-
fore the expression data can be subjected to further analy-
sis. The preprocessing steps usually involve (i) background
correction, (ii) data normalization, and (iii) missing values
estimation.

The motivation for background correction is the belief
that a spot’s measured intensity includes a contribution not
due to the specific hybridization of the target to the probe.
This could arise from non-specific hybridization and stray
fluorescence emitted from other chemicals on the glass slide.
Such contribution should be removed from the spot’s mea-
sured intensity to obtain a more accurate quantification of
hybridization. Different approaches, ranging from simple
subtraction of local background intensity[46,47] to sophis-
ticated statistical correction have been proposed[48].
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Fig. 7. Left: The segmentation of a microarray image into blocks. Right: Gridding in a block.

Fig. 8. cDNA microarray spot segmentation results (contrast is enhanced for visual display).

The purpose of normalization is to adjust for any bias that
arises from variation in the microarray process rather than
from biological differences between the RNA samples. Po-
sition variation on a slide may arise due to differences be-
tween the print-tips, variation over the course of the print-run
or non-uniformity in the hybridization. Differences between
slides may arise from differences in ambient conditions
when the slides were prepared. Another common variation
is the red–green bias due to the differences between the la-
beling efficiencies, the scanning properties of the two fluors,
and the scanner settings. It is necessary to normalize the spot
intensities before any subsequent analysis is carried out.

The most widely used within-slide normalization method
assumes that the red–green bias is constant on the log-scale
across the slide. The log-ratios are corrected by subtract-
ing a constantc to get the normalized valuesMnorm =
log2(R/G)− c. The global constantc is usually estimated
from the mean or the median log-ratios value over a sub-
set of the genes assumed to be not differentially expressed
[49,50]. However, the imbalance in the red and green in-
tensities is usually not constant across the spots within and
between slides, and can vary according to overall spot in-
tensity, location on the slide, slide origin, and possibly other
variables. Other more sophisticated normalization methods
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are available to account for these dependencies[51]. Addi-
tionally, housekeeping genes can be used as control spots
for normalization.

Microarray gene expression experiments usually suffered
from the missing values problem. Missing values occur due
to various reasons, including artifacts on the microarray
image, insufficient resolution, image corruption, etc. The
unreliable spots on the microarray image are usually
manually flagged and excluded from subsequent analysis,
resulting in the missing of data on those locations. The
existence of missing values has important implication for
subsequent data analysis. For example, the inability of many
cluster algorithms to process the missing values means
that profiles containing missing values are often discarded.
However, instead of ignoring gene expression profiles con-
taining missing values (thus throwing away useful informa-
tion), such missing values can often be estimated based on
available knowledge and assumptions about the data.

Reliable estimation of missing values is important since it
greatly affects subsequent data analysis. Common methods
to deal with missing values are replacements by zeros or by
the average of the expression profile. Such techniques, how-
ever, made very crude use of the available knowledge within
the data. Other more advanced techniques, such as the K-
nearest neighbor method (KNNimpute) or the singular value
decomposition (SVD) method (SVDimpute), have recently
been proposed[52]. We have recently proposed a missing
value imputation technique based on projection onto convex
sets (POCS) and SVD[53]. Our algorithm uses two convex
sets derived from performing SVD on the expression ma-
trix. Let the gene expression data be tabulated as a matrixA
of sizeM×N , whereM denotes the number of genes being
studied andN denotes the number of arrays produced under
N different experimental conditions. If we perform SVD to
matrixA, we get

AM×N = UM×M�M×NV T
N×N . (3)

LetL=min{M,N}, matrixV T now containsL eigengenes,
and matrixU containL eigenarrays. UnlikeSVDimpute,our
method makes use of information in both the eigengenes
and eigenarrays for missing value imputation. Moreover, we
allow uncertainties in the estimated values by modeling them
as convex sets and use the POCS algorithm to iteratively
refine the estimated values. Using the new algorithm, we
were able to obtain a normalized root mean squared error
reduction of between 15–20% compared toKNNimputeand
SVDimputeon the gene expression datasets of yeast cell-
cycle [54].

3.4. Pattern discovery by cluster analysis

A standard tool in gene expression data analysis is clus-
ter analysis. Cluster analysis aims at finding groups in a
given data set such that objects in the same group are sim-
ilar to each other while objects in different groups are dis-

similar. Since genes with related functions are expected to
have similar expression patterns, clustering of genes may
suggest possible roles for genes with unknown functions
based on the known functions of some other genes that
are placed in the same cluster. Many clustering algorithms
developed in pattern recognition, for example, K-means,
Self-Organizing Maps (SOM), Hierarchical clustering, Self-
Organizing Tree Algorithm, Principal Component Analysis
(PCA), and Multi-Dimensional Scaling, have all been ap-
plied to the study of high-dimension gene expression data
[55–62]. Clustering of gene expression data has been ap-
plied to the study of temporal expression of yeast genes in
sporulation[63], the identification of gene regulatory net-
works [64], and the study of cancer[65].

Traditional clustering techniques can generally be clas-
sified into two categories, hierarchical and partitional.
Hierarchical clustering algorithm transforms a pairwise dis-
similarity matrix of patterns into a sequence of nested par-
titions, called a dendrogram. Partitional clustering, on the
other hand, performs a partition of patterns intoK clusters,
such that patterns in a cluster are more similar to each other
than to patterns in different clusters. Both categories of clus-
tering algorithms have their merits and weaknesses and both
have been used extensively in gene expression data study.

We have recently proposed a novel hierarchical-
partitioning framework that combines the features of both
categories of algorithms, which we called binary hierarchi-
cal clustering (BHC)[66]. The BHC is inspired by the idea
of hierarchical binary subdivision of data proposed in[67].
In essence, the algorithm performs a successive binary sub-
division of the data in a hierarchical manner, until further
splitting of a partition into two smaller partitions is in-
significant anymore (seeFig. 9). The hierarchical structure
is manifested in the binary tree structure of the clustering
result, where a parent node gives rise to two children nodes
if the projection onto the optimal Fisher discriminant axis
is greater than a certain threshold. The tree structure allows
the relationship between adjacent clusters and the variation
within each cluster to be observed easily. The partitioning
behavior of our algorithm is incorporated in the cluster
splitting process, where a variant of the fuzzy C-means
clustering algorithm is used to split a parent cluster into
two children clusters. The main advantages of the BHC
clustering algorithm are: (i) The number of clusters can be
estimated from the data directly using a binary hierarchical
framework; (ii) No constraint about the number of samples
in each cluster is required, and (iii) No prior assumption
about the class distribution is needed.

In traditional partition-based clustering algorithms, if the
number of prototypes is less than that of the natural clusters
in the dataset, a prototype could win patterns from more
than one cluster. This behavior is called one-prototype-
take-multiple-clusters (OPTMC) (seeFig. 10a). Thus, a
natural cluster might be erroneously divided into two or
more classes, or several natural clusters or part of them are
erroneously grouped into one class. In view of the above
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Fig. 9. The binary hierarchical clustering framework. (a) Original gene expression data treated as one class. (b) Split the class into two
clusters, A and BC. (c) Cluster A cannot be split further, but cluster BC is split into two clusters, B and C. (d) Both cluster B and C cannot
be split any more, and we have three clusters A, B, and C (figure adapted from Ref.[67]).

Fig. 10. Two learning methods: OPTMC versus OPTOC. Left: One prototype takes the center of three clusters (OPTMC). Right: One
prototype takes one cluster (OPTOC) and ignores the other two clusters. See Ref.[70].

shortcoming, we recently proposed a new partition-based
clustering framework called Self-Splitting and Merging
Competitive Learning Clustering (SSMCL)[68,69]. The
new algorithm is able to identify the natural clusters through

the adoption of a new competitive learning paradigm called
the one-prototype-take-one-clusters (OPTOC)[70]. The
OPTOC learning paradigm allows a cluster prototype to
focus on just one natural cluster, while minimizing the
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Fig. 11. The clustering results for the yeast cell cycle data[54]. The number of clusters is set to 30.

competitions from other natural clusters (seeFig. 10b). The
OPTOC behavior of a cluster prototype is achieved through
the use of a dynamic neighborhood, which causes the pro-
totype to eventually settle at the center of a natural cluster,
while ignoring competitions from other clusters.

Since it is very difficult to estimate reliably the correct
number of natural clusters in a complex high dimension
dataset, an over-clustering and merging strategy was used
to estimate the number ofdistinct clustersin the dataset.
The over-clustering and merging strategy can be viewed as a
top-down (divisive clustering), followed by a bottom-up (ag-
glomerative clustering) process. In the top-down step, loose
clusters (as measured by their variances) are successively
split into two clusters until a pre-specific number of clus-
ters, set to be larger than the true number of clusters in the
data, are obtained. The over-clustering minimizes the chance

of missing some natural clusters in the data. The merging
step then attempts to merge similar clusters together, until
finally all remaining clusters are distinct from each other.
The SSMCL algorithm was used to cluster the yeast cell
cycle data[54]. The data was first over-clustered into 30
clusters (seeFig. 11). Cluster-merging is then performed on
the result until 22 clusters remained (seeFig. 12). The final
clusters are all visually distinct from each other.

3.5. Temporal profile analysis and gene regulation

Whole-genome expression time-series data are a par-
ticularly valuable source of information because they can
describe a dynamic biological process such as the cell
cycle or metabolic process[54,71]. They allow the deter-
mination of causal relationships between the expressions of
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Fig. 12. The final clustering results for the yeast cell cycle data after cluster merging. 22 distinct clusters are obtained.

different genes. Such causal relationship allows the extrac-
tion of gene regulatory information, and ultimately leads to
a better understanding of the complicated gene networking
process within a cell.

Several methods were proposed to extract the signifi-
cant modes of variation from the large array of expression
time series data. Holter et al.[72] used SVD to extract the
“characteristic modes” of gene expression. They showed
that the behavior of the widely disparate gene systems
analyzed in their work is dominated by a small subset of
the characteristic modes and that a linear combination of
just a few modes provides a good approximation to the
behavior of the entire system in most cases. Alter et al.
[73] used a similar analysis on two cell cycle time series
and found that the first two modes for the cell cycle time
series are approximately sinusoidal and 90◦ out of phase.
The temporal nature of time series gene expression data
was explicitly modeled by Dewey and Galas[74] using
a dynamic model. They modeled the entire set of gene
expression data using a first order Markov model which
is equivalent to a first order autoregressive (AR) model.
The construction of a genetic network consisting of “dy-
namic classes” based on the transition matrix was also
demonstrated.

All the methods mentioned above analyzed the gene
expression data as a whole, and attempt to summarize
the dataset by a few dominant components. These meth-
ods can therefore be considered as global. Another class
of algorithms attempt to perform pairwise comparison of
gene expressions to identify pairs of genes that have direct
regulatory relationships from the set of gene expression pro-
files. Several algorithms that perform such pairwise analysis
for extracting regulatory information from microarray time-
series data are the simple correlation analysis method[75],
the edge detection method[76], the event method[77], and
our spectral component correlation method[78,79].

Among the various pairwise comparison approaches,
correlation-based method is perhaps the most popular one.
This method determines whether or not two genes have a
regulatory relationship by checking the global similarity
between their expression profiles using the Pearson corre-
lation measure. However, it does not take into account the
fact that there is often a time delay before the regulator
gene product can exert its influence on the target gene.
Such time delay can significantly degrade the performance
of the method. Correlation method also strongly favours
global similarity over more localized similarities arising
from conditional regulatory relationships.
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The edge detection method and the event-based method
are specifically designed to overcome the shortcomings of
the correlation-based analysis. The edge detection method
scans through each gene expression curve to determine
where major changes in expression level (edges) occur. To
produce a score, the edge detection method sums up the
number of edges in two gene expression curves that share
the same direction and are within reasonable distances of
each other. Gene pairs that are likely to have an activation
relationship would give high scores. Similar to the edge
method, the event method also examine the slope of the
expression profile at each time interval. Depending on the
slope value, the algorithm marks each event as either rising
(R), constant (C), or falling (F), thus resulting in a string
of events for each expression profile. A pairwise sequence
alignment of the event strings is then performed to obtain
a numerical score that reflect the regulatory relationship
between two genes.

If two genes, A and B, are co-regulated, the expression
of gene A and gene B should vary more or less at the same
frequency. This frequency of variation, however, may not be
easily seen from the two time-series expression profiles due
to noise and other factors. In addition, if gene B is under the
influence of both gene A and gene C (“two-regulating-one”
situation), and the expression profiles of these influencing
genes are varying at different frequencies, then the relation-
ship between gene A and gene B may not be easily seen
from their time-series profiles. This would cause problem
for correlation-based similarity comparison, as well as the
edge detection method and the event-based method.

In [78,79], we propose a spectral component correlation
approach for measuring the correlation between time-series
expression data, and use the results to infer the potential
regulatory relationships between genes. The technique sum-
marizes the essential features of an expression pattern by
means of a frequency spectrum estimated by AR modeling
[80]. This method has been studied extensively in magnetic
resonance spectroscopy[81]. The idea behind our technique
is to decompose a time-series expression profilex[n] into
a set of discrete-time damped sinusoids of various frequen-
cies,

x[n] =
M∑
i=1

xi [n] =
M∑
i=1

�i exp(�in) cos(�in+ �i ). (4)

The parameters in this model,�i , �i , �i , and �i (i =
1,2,3, . . . ,M), are the amplitude, damping factor, normal-
ized frequency and phase angle respectively of component
i. The correlation ofx[n] with another sequencey[n] can
then be reformulated as a sum of scaled component-wise
correlations,

x[n] ◦ y[n] =
∑
i

∑
j

√
ExiEyj

ExEy
xi [n] ◦ yj [n], (5)

Table 2
Results for the two correlation methods applied to all 439 known
regulatory pairs

Traditional Traditional Total
correlation<0.5 correlation>0.5

(a) Statistics for the 343 activation pairs
Component-wise 111 9 120
correlation<0.5
Component-wise 196∗ 27 223
correlation>0.5
Total 307 36 343

Traditional Traditional Total
correlation<−0.5 correlation>−0.5

(b) Statistics for the 96 inhibition pairs
Component-wise 1 40 41
correlation<0.5
Component-wise 4 51∗ 55
correlation>0.5
Total 5 91 96

where the symbol◦ denotes correlation operation and each
term with letterE represents either total energy of a sequence
or energy of a particular component. This equation shows
how a correlation of two sequences can be separated into
a set of scaled component-wise correlations between each
spectral component. Such component-wise correlation could
provide more insights into the regulatory relationship. For
instance, for the “two-regulating-one” situation, correlation
between the expression profiles of gene A and gene B may
not be strong enough to suggest their relationship due to the
presence of spectral components in gene B induced by gene
C. However, the spectral components of gene B due to gene
A would exhibit strong correlations to gene A’s expression
profile.

We use the spectral component correlation algorithm to
analyze the alpha-synchronized yeast cell-cycle dataset[54].
We were able to detect many regulatory pairs that were
missed by the traditional correlation method due to weak
correlation value. For those regulations with strong oscilla-
tory but time-shifted expression pairs, we can easily iden-
tify them by using only the spectral magnitude informa-
tion. When the component-wise correlation analysis is ap-
plied to all 439 known regulations, the results indicated
that 223 out of 343 activations and 55 out of 96 inhibi-
tions have their component-wise correlations score greater
than 0.5 (seeTable 2). We found that a large number of
visually dissimilar expression pairs do have very similar
dominant frequency components. For example, among those
307 pairs having traditional correlation coefficients of less
than 0.5, 196 of them have greater than 0.5 component-
wise correlation coefficients. Furthermore, 60 out of this
196 pairs have their component-wise correlation coefficients
greater than 0.9 and the expression patterns in each of
these pairs strongly oscillate at almost identical frequencies.
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Fig. 13. Two activation regulations with geneYPR120Cas an activatee. (a) Activation regulation with geneYGR274Cas an activator. (b)
Activation regulation with geneYAL040Cas an activator. (c) Correlated frequency components for the first pair. (d) Correlated frequency
components for the second pair.

The spectral component correlation method therefore allows
the hidden component-wise relationships between two ex-
pression profiles to be revealed, which are otherwise hidden
in the traditional correlation method.

For those regulations involving a single gene being si-
multaneously regulated by two or more genes with differ-
ent expression frequencies, it could be possible to identify
them by checking for the existence of regulators’ frequen-
cies from the expression profile of the gene being regulated.
Fig. 13shows two known activation regulations with a com-
mon geneYPR120Cas an activatee. The figure reveals that
the first regulation has its expression profiles correlated at
frequency of around 1.48 rad/s, whereas the second regula-
tion has its profiles correlated at around 0.76 rad/s.

To see how causal relationship can be inferred from the
algorithm, we choose the genesYBR240CandYAL040Cas
references and find all other genes in the Filkov’s dataset

[76] which has a component-wise correlation coefficient of
greater than 0.7. There are 55 out of 288 genes forYBR240C
and 59 out of 288 genes forYAL040Cthat satisfy this thresh-
old. These two sets of genes with their scores are shown
in Fig. 16 and their oscillatory properties are clearly re-
vealed when they are arranged such that their phase is in
descending order. Within these genes, one known activa-
tion regulation of geneYBR240Cis contained in the first
set and three for geneYAL040Care contained in the sec-
ond set. Note that genes below the reference gene have
their phases lag by 0–180◦ relative to the reference gene’s
phase, and they can be considered as potential activated can-
didates. On the other hand, genes above have their phases
lead by 0–180◦, and they can be considered as potential in-
hibited candidates. If we look at the known activatees for
the two examples shown inFig. 14, we see that they are all
located below their corresponding activators. The spectral
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Fig. 14. Genes in the Filkov’s dataset have their component-wise correlation coefficients, relative to gene (a)YBR240Cand gene
(b) YAL040C, greater than 0.7. The known activation regulations with genesYBR240CandYAL040Cas activators are highlighted.

component correlation method allows such casual relation-
ship to be observed.

4. Discussions and conclusions

This article presents a review of applications of pattern
recognition techniques to the emerging field of bioinfor-
matics. In particular, we focus on two key areas: DNA se-
quence analysis and microarray gene expression analysis,
which have been topics of intense research recently. In DNA
sequence analysis, sequence comparison with the annotated
sequences in the online databases is an important problem.
Currently, the most commonly used sequence comparison
tools are those based on string pattern matching. Algorithms
that are efficient and computationally fast are of paramount
importance in view of the enormous size of current DNA
sequence databases. For relatively short sequences, other
sequence comparison and visualization techniques are pos-

sible. We briefly described the DB curve sequence visual-
ization method for short sequence comparison. One inade-
quacy of string matching technique is that structural or func-
tional contexts are not readily observable in the matching
sequences. For example, in string matching two sequences,
we would not know explicitly where the segments corre-
spond to, say, coding region, are located in the matching
sequence. Such contexts may be more readily observable if
similarity matching is performed in the transform domain.

A major area of research in DNA sequence analysis is
that of gene prediction. For gene prediction, finding effective
features is a major task. The problem is somewhat similar
to conventional pattern recognition problems, where finding
a set of discriminative features that adequately describe the
various classes is an important first step. We described how
one can exploit the 3-base periodicities in a coding sequence
by a classical signal processing technique, i.e., the discrete
Fourier transform. The windowed FFT algorithm has re-
cently been applied successfully to detect exons and introns,
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to identify correct reading frame, and to reveal other biolog-
ically relevant periodicities in the DNA sequence. Although
substantial work has been done in the area of gene predic-
tion, the problem is far from been solved. Further work is
required to improve the detection rates and to decrease the
level of falsely predicted genes. Such improvements may
come from the incorporation of new and better sub-models,
of promoters or initial and terminal exons, as well as other
physical properties and signals present in the DNA, such as
bendability or nucleosome positioning, and better classifier
design.

In the second part of this review, we described some key
issues in microarray gene expression analysis. We described
how to extract the gene expression data from the microar-
ray images. We also discussed the pre-processing steps nec-
essary, i.e., background correction, normalization, missing
value estimation, to prepare the gene expression data for
subsequent analysis. Cluster analysis is an important tool
for the discovery of interesting patterns and structures in
gene expression data. We presented some of our latest work
on cluster analysis of gene expression data which overcome
some of the short comings of current clustering techniques.
Further work in this area could be the investigation of al-
ternative feature space obtained through some coordinate
transformations, such that the salient structures in the data
become more accessible to clustering. Gene expression time
series data could be used to study the dynamic biological
process such as the cell cycle or metabolic process. Spec-
tral estimation technique is particularly useful in this area.
We discussed current approaches in the study of expression
time series data and point out some of their shortcomings.
We then described our recent work for expression time se-
ries data analysis using the technique of spectral component
correlation. The dominant spectral components, estimated
through AR modeling, allow many otherwise weak but bio-
logically significant correlations to be detected successfully.
The technique also allows the inference of complex regu-
latory relationships, such as multiple-to-one regulations be-
tween multiple genes, as well as the causal relationships
between regulators and regulatees.

In conclusion, we note that the field of bioinformatics is
multi-discipline in nature. Collaboration between biologists,
computer scientists and engineers is indispensable to solving
many of the fundamental biological problems. As many of
the problems in bioinformatics involve identifying and ana-
lyzing specific features and patterns in the data, we believe
that the pattern recognition community could make signifi-
cant contribution to this challenging but fascinating emerg-
ing research area. Having said that, we certainly do not want
to convey the impression that biological problems are just
like normal computer science problems. Instead, the readers
are reminded that for any computer algorithms to be useful in
bioinformatics, they should make biological sense. Domain
knowledge about the underlying biological process should
always be taken into account if possible when performing
any computation and during the result interpretation phase.
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